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Abstract

This paper describesa Bayesian technique forun-

supervised classificationof data and itscomputer

implementation, AutoClass. Given real valued

or discretedata, AutoClass determines the most

probable number of classespresent in the data,

the most probable descriptions of those classes,

and each object's probability of membership in

each class. The program performs as well as

or better than other automatic classificationsys-
ternswhen run on the same data and contains no

ad hoc similarity measures or stopping criteria.
AutoClass has been applied to several databases

in which it has discovered classes representing
previously unsuspected phenomena.

1 Introduction

AutoClass, an automatic classificationprogram, searches

for classesin data using Bayesian statisticaltechniques. It

defines classesnot as partitionsof the data but as prob-

abilisticdescriptions of processes represented in the data.

From thesedescriptions,one can determine the probability

that each object isa member of each class.The resulting

classificationsystem has severalimportant advantages over
most previous work:

• AutoClass automatically determines the most prob-

able number of classes. The classesfound represent

actual structure in the data. Given random data, Au-

toClass discoversa singleclass.

• Bayes's theorem isallthat isrequired to perform clas-

sification. No ad hoc similaritymeasure, stopping

rule,or clusteringquality criterionisneeded. Decision

theory appliesdirectlyto the probabilitydistributions
calculatedby AutoClass.

• Classificationis probabllistic.Class descriptionsand

assignments of objects to classesare given as proba-

bilitydistributions.The resulting_fuzzy" classescap-

ture the common _nse notion of class membership

better than a categoricalclassification.

• Real valued and discrete attributes may be freely

mixed, and any attribute values may be missing.
_Tree valued" attributes can be easily incorporated
into the AutoClass model as well.

"This work partiallysupported by NASA grant NCC2-428

2 Theory

When classifyinga database, AutoClass does not attempt

to partition the data into classes,but rather computes

probabilisticdescriptions of classeswhich account for the
observed data. In order to findclassesin a set of data, we

make explicitdeclarationsofhow members of a classwillbe

distributedin the data in the form of parameterized prob-

abilisticclassmodel functions. For instance,in classifying

a database of cars, we might assume that the weights of

cars in a particularclasswillbe distributed normally with

a mean of 3000 pounds and a standard deviation of 100

pounds. Our classmodel function in thiscase isa Gaus-

sian curve. Once the classesare specifiedin thisway, we

can findthe probabilityof the data having come from such

a set of classesby simple probability formulas. Finding

the best classificationis then a matter of varying the class

parameters--for instance, adjusting the mean and stan-
dard deviation--untilthey are maximally predictiveof the

data. Classificationhas long been studied in these terms

as the theory of finite mixtures. Everitt and Hand [1981]

provide an excellentreview containing over 200 reference_

AutoClass isan implementation of the Bayesian solution

to the finitemixture problem. We begin with an uninfor-

mative priorprobabilitydistributionover the classification

parameters (which expressesour a prior/ignorance of the

parameters) and then update this distribution by using

the information in the database to calculatethe posterior

probabilitydistributionof the parameters. This posterior

distributionallows us to determine both the most probable

classificationparameters for a given number of classesas

wellas the most probable number of classespresent in the

data. From thisinformation it is also possible to calcu-

latethe probability that each object isa member of each

class.Note that itispossible to determine the parameters

of strongly overlapping classes accurately, although very

few of the objects can be assigned to any classwith high

probability.

- rn addition to providing the database, the user selects

an appropriate classmodel. For real valued variables,for

example, the defaultmodel isa Gaussian distribution.Au-

toC1ass then calculatesthe optimal values of the parame-

tersfor a given number of classesand the probability that

each number of classesisactually present in the data. As

finaloutput, AutoClass provides the most probable num-

ber ofclasses,the most probable values of the classification

parameters for that number of classes,and also the prob-

abilityof membership of each object in each class.

Classificationsare invarinnt to changes of the scaleor In order to make any headway into classification,and

originof the data. indeed to give meaning to the term, one must define what
one means by a class.We do so mathematically through

the classmodel functions.By committing ourselvesto spe-
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cificfunctions, we are not assuming the functions describe

the actual classes any more than the act of looking for

classes assumes that classes exist. Rather, we are setting
forth precisely the question we wish to ask: "What classes
of the given form can be found in the data?"

The current AutoClass program (kutoClass II) looks

for classes in which attributes vary independently within
a class. It models real-valued attributes with Gausslan

probability distributions and discrete attributes with lists

of outcome probabilities. We phrased our classification

question in these terms to simplify implementation, with

the realization that ignoring attribute dependence ne-

glects potentially useful information. Working within this

framework, we have found meaningful structure in many

databases, as Section 4 attests.

AutoClass uses a Bayesian variant of Dempster and

Laird's EM Algorithm [Dempster e_ al., 1977] to search

for the maximum of the posterior distribution of the clas-

sification parameters and approximates the distribution
about this maximum. AutoClass also includes heuristic

techniques for avoiding local maxima in the search. Al-

though local maxima present a difficult problem in prac-

tice, they are an algorithmic concern and require no ad-

ditional theory. Details of the Bayesian theory of finite

mixtures appear in the Appendix. The AutoClass algo-

rithm is described thoroughly by Cheeseman e_ aL [1988]

3 Discussion

It is important to point out that we do no_ assume that the

classification parameters or the number of classes are _ran-

dora variables." They have definite but unknown values
which we must infer. The prior distributions used do not
represent a frequency distribution of the parameters, but

rather the state of knowledge of the observer (in this case

AutoClass) before the data are observed. Thus there can

be no _true values of the prior probabilities" as Duda and

Hart suggest [1973], since prior probabilities are a function
of the observer, not of the world. Although Cox gave the

first full explanation of this issue in 1946 [Cox, 1946], it

remains a source of confusion today. 1

Bayesian methods have often been rejected due to their

use of prior distributions, because of the belief that priors

taint the analysis with personal biases. It is possible to use

priors that are uninformative and completely impersonal. 2

These are invariant to any change of scale or origin, so in

no way do they express any a priori opinions or biases.

Rather, they express complete a priori ignorance of the

parameters (as defined by specific invarianee criteria).

On the other hand, the ability to incorporate prior

knowledge can be of great use when such information is

available. Informative priors are often mathematically sim-
pler than their uninformative brethren, and for this reason
AutoClass uses a weak, informative prior which introduces
little bias. AutoClass could be easily extended to include

strong prior knowledge, if it is available, whereas many

ISee Jaynes [1986] for a recent discussion of the nature of
Bayesian inference and its relationship to other methods of sta-
tistical inference.

2See Jaynes [1968] for a lucid description of uninformative
priors.

non-Bayesian approaches would have difficulty incorporat-

ing such knowledge smoothly.
AutoClass can be used to learn from examples. If the

program is given a set of objects pre-classified by a teacher,

it can form descriptions of the specified classes and use

these to classify new objects. Furthermore, it can estimate

missing parameter values from its classification based on

the values present. Thus supervised learning can be com-

bined with unsupervised learning in the same system, using

the same theory.

Development of AutoClass III is underway. It will in-

clude exponential distributions for real attributes and mul-

tivariate distributions that will make use of dependence

between attributes. We are also developing the theory for

automatic selection of class distributions, allowing the sys-

tem to take advantage of increased model complexity when

the data justify estimation of the additional parameters.

Thus, simple theories (with correspondingly few parame-

ters) can give way to more complex theories as the amount

of data increases. The theory for such model selection is

very similar to the selection of the number of classes.

4 Results

AutoClass has classified data supplied by researchers ac-

tive in various domains and has yielded some new and

intriguing results:

• Iris Database

Fisher's data on three species of iris [Fisher, 1936] are

a classic test for classification systems. AutoClass dis-

covers the three classes present in the data with very

high confidence, although not all of the cases can bc as-

signed to their classes with certainty. Wolfe's NOR.MIX

and NORMAP [Wolfe, 1970] both incorrectly found four
classes, and Dubes's Mtt index [Dubes, 1987] offers only
weak evidence for three clusters.

* Soybean Disease Database

AutoClass found the four known classesin Stepp's soy-

bean diseasedata, providing a comparison with Michalski's

CLUSTER/2 system [Michalski and Stepp, 1983a]. Auto-

Class's class assignments exactly matched Michalski's--

each object belonged overwhelmingly to one class,indi-

cating exceptionally well separated classesfor so small a

database (47 cases,35 attributes).

• Horse Colic Database

AutoClass analyzed the resultsof 50 veterinary testson

259 horses and extracted classes which provided reliable

disease diagnoses, although almost 40% of the data were

missing.

• Infrared Astronomy Database

The Infrared Astronomical Satellitetabulation of stel-

larspectra isnot only the largestdatabase AutoClass has

assayed (5,425 cases, 94 attributes) but the least thor-

oughly understood by domain experts. AutoClass's results

differedsignificantlyfrom previous analyses. Preliminary

evaluations of the new classesby infrared astronomers in-

dicate that the hitherto unknown classeshave important

physical meaning. The AutoClass infrared source classifi-

cation isthe basis of a new starcatalog to appear shortly.
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We are actively collecting and analyzing other databases

which seem appropriate for classification, including an

AIDS database and a second infrared spectral database.

5 Comparison with Other
Methods

Several differentcommunities are interestedin automatic

classification,and we compare AutoClass to some existing
methods:

• Maximum Likelihood Mixture Separation

AutoClass is very similar to the maximum likelihood
methods used to separate finite mixtures as described in

the statistical pattern recognition literature. The math-

ematical statement of the problem is identical to that

discussed by Duda and Hart [1973] and by gveritt and

Hand [1981]. The primary difference lies in AutoClass's

Bayesian formulation, which removes singularities from the

search space and provides a more effective method for de-

termining the number of classes than existing methods

based on hypothesis testing. A more detailed compari-

son of AutoClass to maximum likelihood methods is given
by Cheeseman et al. [1988]

• Cluster Analysis

Cluster analysis and AutoClass's finite mixture separa-

tion differ fundamentally in their goals. Cluster analysis

seeks classes which are groupings of the data points, defini-
tively assigning points to classes; AutoClass seeks descrip-
tions of classes that are present in the data, and never

assigns points to classes with certainty.

Minimum Message Length Method

A classification method based on minimum total mes-

sage length (MML) was introduced 20 years ago [Wallace

and Boulton, 1968] and has been considerably extended

since then. [Wallace and Freeman, 1987] This method
searches for the classification that can be encoded in the

fewest bits, where the encoded message consists of two

parts: the information required to describe the class pa-

rameters (i.e., the particular classification model) and the

information required to encode the data given the pa-
rameters. Because this method tries to minimize the to-

_al message length, there is a built-in tradeoff between

the complexity of the model (the information required

to describe the classes) and the fit to the data (the in-

formation required to encode the data given the classes).

This is the same tradeoff given by the Bayesian approach,

and in fact the minimum message length criterion is a

very good approximation to the Bayesian criterion. See

Georgeff [Georgeff and Wallace, 1984] for details. Note

that the MML method requires the parameters to be esti-

mated to an optimal accuracy that depends on the data.

6 Conclusion

We have developed a practical and theoretically sound

method for determining the number of classes present in

a mixture, based solely on Bayes's theorem. Its rigorous

mathematical foundation permits the assumptions and def-

initions involved to be stated clearly and analyzed care-
fully. The AutoClass method determines the number of

classes better than existing mixture separation methods

do and also compares favorably with cluster analysis and

conceptual clustering methods.

The other major difference lies in the definition of a
class. The AutoCIass method defines a class explicitly With Appendix

model functions and then derives the optimal class sep- This appendix presents the Bayesian theory of finite mix-

aration criterion using Bayes's theorem. Cluster analysis tures, the mathematical basis of the AutoClass algorithm.

techniques define a class indirectly by specifying a criterion In the theory of finite mixtures, each datum is assumed
for evaluating clustering hypotheses, such as maximizing
some form of intra-class similarity.

• Conceptual Clustering

Both AutoClass and conceptual clustering methods seek
descriptions of the clusters rather than a simple parti-

tioning of the objects. The main difference between the

methods is the choice of concept language: AutoClass uses

a probabilistic description of the classes, while MichaLski

and Stepp [1983b] use a logical description language. The

logic-based approach is particularly well suited to logically

"clean" applications, whereas AutoClass is effective even

when the data are noisy or the classes overlap substantially.

Conceptual clustering techniques specify their class def-

initions with a "clustering quality criterion" such as "cate-

gory utility." [Fisher, 1987] As with cluster analysis, these

criteria impose constraints on what clusterings are desired
rather than on the nature of the actual clusters. This may

reflect a difference in goals since Langley's CLASSIT [Lan-

gley eg aI.. 1987] and Michalski's CLUSTER/2 [Michalski
and Stepp, 1983a] programs seek explicitly to emulate hu-

man classification, which is a more difficult problem than
AutoClass addresses.

to be drawn from one of m mutually exclusive and exhaus-
tive classes. Each class is described by a class distribution,

p(zi ] z_ E C i, _ ), which gives the probability distribution

of the attributes of a datum if it were known to belong

to the class Cj. These class distributions are assumed to

be parameterized by a class parameter vector, _, which
for a normal distribution would consist of the class mean,

pj, and variance, _,_ The probability of an object being
• J."

drawn from class 3 is called the class probability or mix-

ing proportion, wj. Thus, the probability distribution of a
datumdrawn from a mixture distribution is

r,(=, I #, #,-',) = _'_xjp(z, lzi e cj,_). (1)

#=I

We assume that the data are drawn from an exchange-

able (static)process--that is,the data are unordered and

are assumed to be independent given the model. Thus, the

jointprobabilitydistributionof a set of n data drawn from
a finitemixture is

11

p(:_I#,,r,m)= IIp(=, I g,,_,m). (2)
i=1
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For a given value of the class parameters, we can cal-
culate the probability that an object belongs to each class
using Bayes's theorem,

'p(=,eCjl=,,E,_,m)='_iP(='l='eC_'_ ). (3)
p(=, I E,_, m)

Thus, the classes are _fuzzy" in the sense that even with
perfect knowledge of an object's attributes, it will only be

possible to determine the probabilitythat it isa member

of a given class.
We break the problem of identifying a finite mixture into

two parts: determining the classification parameters for a
given number of classes, and determining the number of
classes. Rather than seeking an estimator of the classifi-
cation parameters (the class parameter vectors, 6, and the

class probabilities, _), we seek their full posterior probabil-
ity distribution. The posterior distribution is proportional
to the product of the prior distribution of the parameters,

p(_,_ ]rn),and the likelihoodfunction,p(_ [0",I?,m):

p(g,,_I ,_,m) = v(g' _ 1r,,)p(_ ! if,,_,m)
P(_I m) , (4)

where p(_ I m) is simply the normalizing constant of the
posteriordistribution,and isgiven by

P(_ I m) =//p(O, e I m) p(_ I O, ,_, m) _,/,_. (5)

To solvethe second halfof the classificationproblem (de-

termining the number ofclasses)we calculatethe posterior

distributionof the number of classes,m. This is propor-

tional to the product of the prior distribution,p(ra),and
the pseudo-llkellhoodfunction,p(_ ] m),

p(m I =-3= p(m)p(_ Im) (6)
p(=-')

The pseudo-likelihoodfunction isjust the normalizing con-

stant of the posteriordistributionof the classificationpa-

rameters (Equation 5). Thus, to determine the number

of classes,we firstdetermine the posteriordistributionof

the classification parameters for each possible number of
classes. We then marginalize (integrate) out the classi-
fication parameters from the estimation of the number of
classes--in effect, treating them as _nuisance '_ parameters.

In general, the marginalization cannot be performed in
closed form, so AutoClass searches for the maximum of
the posteriordistributionof the classificationparameters

(using a Bayesian variant of Dempster and Laird's EM

Algorithm [Dempster et al.,1977]) and forms an approxi-

mation to the distributionabout thismaximum. Including
the search,the algorithm isroughly linearin the amount of

data multiplied by the number of classes.See Cheeseman

et al.[1988]for fulldetailsof the AutoClass algorithm.

Note that in finding the posterior probability distribu-

tionover the number of classes,we are comparing models

with differentnumbers of parameters. Maximum likeli-

hood methods always favor models with more parameters,

because theseextra parameters can be adjusted to fitthe

data better. Bayesian model comparison, on the other

hand, automatically penalizes additional parameters un-

lessthey substantiallyimprove the fitto the data. That

is,Bayesian model comparison has a built-intradeoffbe-

tween complexity of the model and the fitto the data. In
the classificationmodel, Equations 5 and 6 give thistrade-

off.In particular the probability in Equation 6 does not

automatically grow with additional classes,because the
additionalclassesintroduce additional parameters and so

increasethe dimensionality of the integralin the denomina-

tor (Equation 5). Unless the likeh'hoodinsidethe integral

is strongly increased by these additional parameters, the

increased dimensionality willlower the totalprobability.
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